Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Hortic Res ; 11(2): uhae001, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38419969

RESUMO

The stomata regulate CO2 uptake and efficient water usage, thereby promoting drought stress tolerance. NAC proteins (NAM, ATAF1/2, and CUC2) participate in plant reactions following drought stress, but the molecular mechanisms underlying NAC-mediated regulation of stomatal movement are unclear. In this study, a novel NAC gene from Reaumuria trigyna, RtNAC055, was found to enhance drought tolerance via a stomatal closure pathway. It was regulated by RtMYC2 and integrated with jasmonic acid signaling and was predominantly expressed in stomata and root. The suppression of RtNAC055 could improve jasmonic acid and H2O2 production and increase the drought tolerance of transgenic R. trigyna callus. Ectopic expression of RtNAC055 in the Arabidopsis atnac055 mutant rescued its drought-sensitive phenotype by decreasing stomatal aperture. Under drought stress, overexpression of RtNAC055 in poplar promoted ROS (H2O2) accumulation in stomata, which accelerated stomatal closure and maintained a high photosynthetic rate. Drought upregulated the expression of PtRbohD/F, PtP5CS2, and PtDREB1.1, as well as antioxidant enzyme activities in heterologous expression poplars. RtNAC055 promoted H2O2 production in guard cells by directly binding to the promoter of RtRbohE, thus regulating stomatal closure. The stress-related genes RtDREB1.1/P5CS1 were directly regulated by RtNAC055. These results indicate that RtNAC055 regulates stomatal closure by maintaining the balance between the antioxidant system and H2O2 level, reducing the transpiration rate and water loss, and improving photosynthetic efficiency and drought resistance.

2.
Nanomaterials (Basel) ; 13(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446517

RESUMO

Semiconducting single-walled carbon nanotubes (s-SWCNTs) with large diameters are highly desired in the construction of high performance optoelectronic devices. However, it is difficult to selectively prepare large-diameter s-SWCNTs since their structure and chemical stability are quite similar with their metallic counterparts. In this work, we use SWCNTs with large diameter as a raw material, conjugated polymer of regioregular poly-(3-dodecylthiophene) (rr-P3DDT) with long side chain as a wrapping agent to selectively separate large-diameter s-SWCNTs. It is found that s-SWCNTs with a diameter of ~1.9 nm are effectively enriched, which shows a clean surface. By using the sorted s-SWCNTs as a channel material, we constructed thin-film transistors showing charge-carrier mobilities higher than 10 cm2 V-1 s-1 and on/off ratios higher than 103.

3.
Int Immunopharmacol ; 120: 110313, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37267856

RESUMO

OBJECTIVE: Major vault protein (MVP) is vital in various macrophage-related inflammatory diseases. However, the effects of MVP on macrophage polarization during fracture repair are still unknown. METHODS: We used Mvpflox/floxLyz2-Cre mice (myeloid-specific MVP gene knockout, abbreviated as MacKO) and Mvpflox/flox (abbreviated as MacWT) mice to compare their fracture healing phenotype. Next, we traced the changes in macrophage immune status in vivo and in vitro. We further explored the effects of MVP on osteogenesis and osteoclastogenesis. Finally, we re-expressed MVP in MacKO mice to confirm the role of MVP in fracture healing. RESULTS: The lack of MVP in macrophages impaired their transition from a pro-inflammatory to an anti-inflammatory phenotype during fracture repair. The increased secretion of pro-inflammatory cytokines by macrophages promoted their osteoclastic differentiation and impaired BMSC osteogenic differentiation, ultimately leading to impaired fracture repair in MacKO mice. Last, adeno-associated virus (AAV)-Mvp tibial injection significantly promoted fracture repair in MacKO mice. CONCLUSIONS: Our findings showed MVP has a previously unknown immunomodulatory role in macrophages during fracture repair. Targeting macrophage MVP may represent a novel therapeutic method for fracture treatment.


Assuntos
Macrófagos , Osteogênese , Camundongos , Animais , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Partículas de Ribonucleoproteínas em Forma de Abóbada/farmacologia , Citocinas/metabolismo
4.
Int J Oral Sci ; 15(1): 26, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380627

RESUMO

Periodontitis imparting the increased risk of atherosclerotic cardiovascular diseases is partially due to the immune subversion of the oral pathogen, particularly the Porphyromonas gingivalis (P. gingivalis), by inducing apoptosis. However, it remains obscure whether accumulated apoptotic cells in P. gingivalis-accelerated plaque formation are associated with impaired macrophage clearance. Here, we show that smooth muscle cells (SMCs) have a greater susceptibility to P. gingivalis-induced apoptosis than endothelial cells through TLR2 pathway activation. Meanwhile, large amounts of miR-143/145 in P.gingivalis-infected SMCs are extracellularly released and captured by macrophages. Then, these miR-143/145 are translocated into the nucleus to promote Siglec-G transcription, which represses macrophage efferocytosis. By constructing three genetic mouse models, we further confirm the in vivo roles of TLR2 and miR-143/145 in P. gingivalis-accelerated atherosclerosis. Therapeutically, we develop P.gingivalis-pretreated macrophage membranes to coat metronidazole and anti-Siglec-G antibodies for treating atherosclerosis and periodontitis simultaneously. Our findings extend the knowledge of the mechanism and therapeutic strategy in oral pathogen-associated systemic diseases.


Assuntos
Aterosclerose , MicroRNAs , Animais , Camundongos , Células Endoteliais , Receptor 2 Toll-Like , Macrófagos , Apoptose , Miócitos de Músculo Liso
5.
Clin Oral Investig ; 27(5): 2335-2346, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36607492

RESUMO

OBJECTIVE: This study was aimed to delineate the clinical, CBCT radiographic characteristics, and complications of maxillary molar in a periodontitis population. MATERIALS AND METHODS: Medical records and CBCT images were utilized to identify adult patients with periodontitis in a tertiary referral dental hospital between June 2019 and December 2020. CBCT scan images were used to characterize the detailed bone thickness, absorbing height, and position of maxillary molar as well as their associated conditions. All relevant descriptive epidemiological data, clinical information, radiographic details, and associated complications were recorded and statistically analyzed. RESULTS: According to the above criteria, 577 eligible periodontitis patients were enrolled and defined as research cohort here with mean age 45 ± 4.8 years. Male patients outnumbered females with a gender ratio of 1.23:1. Our results demonstrated that the bone loss of maxillary first molar was more serious than that of second molar with tooth position symmetry. The occurrence of various complications (periodontal abscess, pulp lesions, furcation lesion, and mucosal thickening) was significantly correlated to periodontal-related clinical parameters of maxillary molar. CONCLUSIONS: Our results demonstrated the more serious bone loss of maxillary first molar with tooth position symmetry. The occurrence of various complications was significantly correlated to periodontal-related clinical parameters. Our findings offer valuable information concerning the clinical, radiographic characteristics, and complications of maxillary molar in a periodontitis population. CLINICAL RELEVANCE: These findings are beneficial for clinicians to comprehensively understand the bone status, pathogenesis, and clinical management of maxillary molar in periodontitis.


Assuntos
Periodontite , Tomografia Computadorizada de Feixe Cônico Espiral , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Tomografia Computadorizada de Feixe Cônico/métodos , Periodontite/diagnóstico por imagem , Periodontite/patologia , Dente Molar/diagnóstico por imagem , Dente Molar/patologia
6.
Elife ; 112022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36317962

RESUMO

Unbiased genetic screens implicated a number of uncharacterized genes in hearing loss, suggesting some biological processes required for auditory function remain unexplored. Loss of Kiaa1024L/Minar2, a previously understudied gene, caused deafness in mice, but how it functioned in the hearing was unclear. Here, we show that disruption of kiaa1024L/minar2 causes hearing loss in the zebrafish. Defects in mechanotransduction, longer and thinner hair bundles, and enlarged apical lysosomes in hair cells are observed in the kiaa1024L/minar2 mutant. In cultured cells, Kiaa1024L/Minar2 is mainly localized to lysosomes, and its overexpression recruits cholesterol and increases cholesterol labeling. Strikingly, cholesterol is highly enriched in the hair bundle membrane, and loss of kiaa1024L/minar2 reduces cholesterol localization to the hair bundles. Lowering cholesterol levels aggravates, while increasing cholesterol levels rescues the hair cell defects in the kiaa1024L/minar2 mutant. Therefore, cholesterol plays an essential role in hair bundles, and Kiaa1024L/Minar2 regulates cholesterol distribution and homeostasis to ensure normal hearing.


Cholesterol is present in every cell of the body. While it is best known for its role in heart health, it also plays a major role in hearing, with changes in cholesterol levels negatively affecting this sense. To convert sound waves into electrical brain signals, specialised ear cells rely on hair-like structures which can move with vibrations; cholesterol is present within these hair 'bundles', but its exact role remains unknown. Genetic studies have identified over 120 genes essential for normal hearing. Animal data suggest there may be many more ­ including, potentially, some which control cholesterol. For instance, in mice, loss of the Minar2 gene causes profound deafness. Yet exactly which role the protein that Minar2 codes for plays in the ear remains unknown. This is in part because that protein does not resemble any other related proteins, making it difficult to infer its function. To find out more, Gao et al. investigated loss of minar2 in zebrafish, showing that deleting the gene induced deafness in the animals. Without minar2, the hair bundles in ear cells were longer, thinner, and less able to sense vibrations: cholesterol could not move into these structures, causing them to dysfunction. Exposing the animals to drugs that lower or raise cholesterol levels respectively worsened or improved their hearing abilities. A recent study revealed that mutations in MINAR2 also cause deafness in humans. The findings by Gao et al. highlight the need for further research which explores the role of cholesterol and MINAR2 in hair bundle function, as this may potentially uncover cholesterol-based treatments for hearing problems.


Assuntos
Perda Auditiva , Mecanotransdução Celular , Peixe-Zebra , Animais , Colesterol/metabolismo , Audição/fisiologia , Perda Auditiva/genética , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Estereocílios/genética , Estereocílios/metabolismo , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
7.
Molecules ; 27(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080149

RESUMO

Single-wall carbon nanotubes (SWCNTs) have a high aspect ratio, large surface area, good stability and unique metallic or semiconducting electrical conductivity, they are therefore considered a promising candidate for the fabrication of flexible gas sensors that are expected to be used in the Internet of Things and various portable and wearable electronics. In this review, we first introduce the sensing mechanism of SWCNTs and the typical structure and key parameters of SWCNT-based gas sensors. We then summarize research progress on the design, fabrication, and performance of SWCNT-based gas sensors. Finally, the principles and possible approaches to further improving the performance of SWCNT-based gas sensors are discussed.


Assuntos
Nanotubos de Carbono , Eletrônica , Nanotubos de Carbono/química
8.
Arch Microbiol ; 204(10): 637, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127470

RESUMO

The persistence of Staphylococcus aureus within biofilm can lead to contamination of medical devices and life-threatening infections. Luckily, lactic acid bacteria (LAB) have an inhibitory effect on the growth of these bacteria. This study aims to select LAB strains from fermented vegetables, and analyze their potential inhibition activities against S. aureus. In total, 45 isolates of LAB were successfully isolated from Sichuan pickles, and the CFS of Lactiplantibacillus plantarum LR-14 exerted the strongest inhibitory effect against S. aureus. Moreover, S. aureus cells in planktonic and biofilm states both wrinkled and damaged when treated with the CFS of L. plantarum LR-14. In addition, whole genome sequencing analysis indicates that L. plantarum LR-14 contains various functional genes, including predicted extracellular polysaccharides (EPS) biosynthesis genes, and genes participating in the synthesis and metabolism of fatty acid, implying that L. plantarum LR-14 has the potential to be used as a probiotic with multiple functions.


Assuntos
Anti-Infecciosos , Alimentos Fermentados , Lactobacillales , Infecções Estafilocócicas , Anti-Infecciosos/farmacologia , Ácidos Graxos , Humanos , Lactobacillaceae , Lactobacillales/genética , Polissacarídeos/farmacologia , Staphylococcus aureus
9.
J Comput Biol ; 29(10): 1061-1073, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35704885

RESUMO

Pathological images play an important role in the diagnosis, treatment, and prognosis of cancer. Usually, pathological images contain complex environments and cells of different shapes. Pathologists consume a lot of time and labor costs when analyzing and discriminating the cells in the images. Therefore, fully annotated pathological image data sets are not easy to obtain. In view of the problem of insufficient labeled data, we input a large number of unlabeled images into the pretrained model to generate accurate pseudo-labels. In this article, we propose two methods to improve the quality of pseudo-labels, namely, the pseudo-labeling based on adaptive threshold and the pseudo-labeling based on cell count. These two pseudo-labeling methods take into account the distribution of cells in different pathological images when removing background noise, and ensure that accurate pseudo-labels are generated for each unlabeled image. Meanwhile, when pseudo-labels are used for model retraining, we perform data distillation on the feature maps of unlabeled images through an attention mechanism, which further improves the quality of training data. In addition, we also propose a multi-task learning model, which learns the cell detection task and the cell count task simultaneously, and improves the performance of cell detection through feature sharing. We verified the above methods on three different data sets, and the results show that the detection effect of the model with a large number of unlabeled images involved in retraining is improved by 9%-13% compared with the model that only uses a small number of labeled images for pretraining. Moreover, our methods have good applicability on the three data sets.


Assuntos
Aprendizagem
10.
Bioinformatics ; 38(10): 2892-2898, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35561198

RESUMO

MOTIVATION: Nucleus identification supports many quantitative analysis studies that rely on nuclei positions or categories. Contextual information in pathology images refers to information near the to-be-recognized cell, which can be very helpful for nucleus subtyping. Current CNN-based methods do not explicitly encode contextual information within the input images and point annotations. RESULTS: In this article, we propose a novel framework with context to locate and classify nuclei in microscopy image data. Specifically, first we use state-of-the-art network architectures to extract multi-scale feature representations from multi-field-of-view, multi-resolution input images and then conduct feature aggregation on-the-fly with stacked convolutional operations. Then, two auxiliary tasks are added to the model to effectively utilize the contextual information. One for predicting the frequencies of nuclei, and the other for extracting the regional distribution information of the same kind of nuclei. The entire framework is trained in an end-to-end, pixel-to-pixel fashion. We evaluate our method on two histopathological image datasets with different tissue and stain preparations, and experimental results demonstrate that our method outperforms other recent state-of-the-art models in nucleus identification. AVAILABILITY AND IMPLEMENTATION: The source code of our method is freely available at https://github.com/qjxjy123/DonRabbit. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias , Redes Neurais de Computação , Algoritmos , Núcleo Celular , Humanos , Microscopia , Neoplasias/diagnóstico por imagem , Software
11.
Environ Pollut ; 307: 119485, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35598817

RESUMO

Industrial phosphate rock (PR) treatment has introduced lead (Pb) contamination into phosphate mining wasteland, causing serious contamination. Although bioremediation is considered an effective method and studies have investigated the bioimmobilization of Pb contamination in phosphate mining wasteland by phosphate-solubilizing bacteria (PSB), the bioimmobilization mechanism remains unclear. In this study, a strain Citrobacter farmeri CFI-01 with phosphate-solubilizing and Pb-tolerant abilities was isolated from a phosphate mining wasteland. Liquid culture experiments showed that the maximum content of soluble phosphate and the percentage amount of Pb immobilized after 14 days were 351.5 mg/L and 98.18%, respectively, with a decrease in pH. Soil experiments showed that CFI-01 had reasonable bioimmobilization ability, and the percentage amount of Pb immobilized was increased by 7.790% and 22.18% in the groups inoculated with CFI-01, respectively, compared with that of the groups not inoculated with CFI-01. Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses showed that the immobilization of Pb was also ascribed to changes in the functional groups (e.g., hydroxyl and carboxyl groups) and the formation of lead phosphate sediments. Finally, the results of the metagenomic analysis indicated that changes in the microbial community structure, enrichment of related functional abundances (e.g., metal metabolism, carbohydrate metabolism, and amino acid metabolism functions), and activation of functional genes (e.g., zntA, smtB, cadC, ATOX1, smtA, and ATX1) could help immobilize soil Pb contamination and explore the mechanism of bacterial bioimmobilization in Pb-contaminated soil. This study provides insights for exploring the immobilization mechanism of Pb contamination in phosphate mining wasteland using PSB, which has significance for further research.


Assuntos
Poluentes do Solo , Bactérias/metabolismo , Citrobacter , Chumbo/metabolismo , Mineração , Fosfatos/química , Solo/química , Poluentes do Solo/análise
12.
Asian J Pharm Sci ; 17(2): 193-205, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35582642

RESUMO

As an important means of communication among cells, exosomes are being studied more and more widely, especially in the context of cancer immunotherapy. In the phase of tumor immunoediting, exosomes derived from tumor cells and different immune cells have complex and changeable physiological functions, because they carry different proteins and nucleic acid from the source cells. Based on the role of exosomes in the communication between different cells, cancer treatment methods are also under continuous research. This review briefly introduces the molecular composition of exosomes, which is closely related to their secretion mechanism. Subsequently, the role of exosomes encapsulating different information molecules is summarized. The role of exosomes in the three phases of tumor immunoediting is introduced in detail, and the relevant literature of exosomes in the tumor immune microenvironment is summarized by using a novel framework for extracting relevant documents. Finally, it summarizes the various exosome-based immunotherapies currently proposed, as well as the challenges and future prospects of exosomes in tumor immunotherapy.

13.
PLoS One ; 17(3): e0265769, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320298

RESUMO

BACKGROUND: Rapid diagnosis and treatment of diabetic foot osteomyelitis (DFO) could reduce the risk of amputation and death in patients with diabetic foot infection (DFI). Erythrocyte sedimentation rate (ESR) is considered the most useful serum inflammatory marker for the diagnosis of DFO. However, whether severe renal impairment (SRI) affects its diagnostic accuracy has not been reported previously. OBJECTIVE: To investigate the accuracy of ESR in diagnosing DFO in DFI patients with and without SRI. METHODS: This was a retrospective cross-sectional study. From the inpatient electronic medical record system, the investigators extracted demographic information, diagnostic information, and laboratory test results of patients with DFI who had been hospitalized in Longhua Hospital from January 1, 2016 to September 30, 2021. Logistic regression was performed to analyze the interaction between ESR and SRI with adjustment for potential confounders. The area under the curve (AUC), cutoff point, sensitivity, specificity, prevalence, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR+), and negative likelihood ratio (LR-) were analyzed by receiver operating characteristic (ROC) curve analysis and VassarStats. RESULTS: A total of 364 DFI patients were included in the analysis. The logistic regression analysis results showed that elevated ESR increased the probability of diagnosing DFO (adjusted odds ratio [OR], 2.40; 95% confidence interval [CI], 1.75-3.28; adjusted P < 0.001); SRI was not associated with the diagnosis of DFO (adjusted OR, 3.20; 95% CI, 0.40-25.32; adjusted P = 0.271), but it had an obstructive effect on the diagnosis of DFO by ESR (adjusted OR, 0.48; 95% CI, 0.23-0.99; adjusted P = 0.048). ROC analysis in DFI patients without SRI revealed that the AUC of ESR to diagnose DFO was 0.76 (95% CI, 0.71-0.81), with the cutoff value of 45 mm/h (sensitivity, 67.8%; specificity, 78.0%; prevalence, 44.7%; PPV, 71.3%; NPV, 75.0%; LR+, 3.08; LR-, 0.41). In contrast, in patients with SRI, the AUC of ESR to diagnose DFO was 0.57 (95% CI, 0.40-0.75), with the cutoff value of 42 mm/h (sensitivity, 95.0%; specificity, 29.2%; prevalence, 45.5%; PPV, 52.8%; NPV, 87.5%; LR+, 1.34; LR-, 0.17). CONCLUSIONS: The accuracy of ESR in diagnosing DFO in DFI patients with SRI is reduced, and it may not have clinical diagnostic value in these patients.


Assuntos
Doenças Transmissíveis , Diabetes Mellitus , Pé Diabético , Osteomielite , Polineuropatias , Insuficiência Renal , Dermatopatias , Biomarcadores , Sedimentação Sanguínea , Proteína C-Reativa/análise , Doenças Transmissíveis/complicações , Estudos Transversais , Pé Diabético/complicações , Pé Diabético/diagnóstico , Feminino , Humanos , Masculino , Osteomielite/complicações , Osteomielite/diagnóstico , Polineuropatias/complicações , Insuficiência Renal/complicações , Estudos Retrospectivos , Sensibilidade e Especificidade , Dermatopatias/complicações
14.
Vet Sci ; 9(2)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35202345

RESUMO

Zebrafish are widely used to investigate candidate genes for human diseases. While the emergence of CRISPR-Cas9 technology has revolutionized gene editing, the use of individual guide RNAs limits the efficiency and application of this technology in functional genetics research. Multiplexed genome editing significantly enhances the efficiency and scope of gene editing. Herein, we describe an efficient multiplexed genome editing strategy to generate zebrafish mutants. Following behavioural tests and histological examination, we identified one new candidate gene (tmem183a) for hearing loss. This study provides a robust genetic platform to quickly obtain zebrafish mutants and to identify candidate genes by phenotypic readouts.

15.
Int J Biol Sci ; 17(15): 4238-4253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803495

RESUMO

Background: Congenital anomalies are increasingly becoming a global pediatric health concern, which requires immediate attention to its early diagnosis, preventive strategies, and efficient treatments. Guanine nucleotide binding protein, alpha inhibiting activity polypeptide 3 (Gnai3) gene mutation has been demonstrated to cause congenital small jaw deformity, but the functions of Gnai3 in the disease-specific microRNA (miRNA) upregulations and their downstream signaling pathways during osteogenesis have not yet been reported. Our previous studies found that the expression of Mir24-2-5p was significantly downregulated in the serum of young people with overgrowing mandibular, and bioinformatics analysis suggested possible binding sites of Mir24-2-5p in the Gnai3 3'UTR region. Therefore, this study was designed to investigate the mechanism of Mir24-2-5p-mediated regulation of Gnai3 gene expression and explore the possibility of potential treatment strategies for bone defects. Methods: Synthetic miRNA mimics and inhibitors were transduced into osteoblast precursor cells to regulate Mir24-2-5p expression. Dual-luciferase reporter assay was utilized to identify the direct binding of Gnai3 and its regulator Mir24-2-5p. Gnai3 levels in osteoblast precursor cells were downregulated by shRNA (shGnai3). Agomir, Morpholino Oligo (MO), and mRNA were microinjected into zebrafish embryos to control mir24-2-5p and gnai3 expression. Relevant expression levels were determined by the qRT-PCR and Western blotting. CCK-8 assay, flow cytometry, and transwell migration assays were performed to assess cell proliferation, apoptosis, and migration. ALP, ARS and Von Kossa staining were performed to observe osteogenic differentiation. Alcian blue staining and calcein immersions were performed to evaluate the embryonic development and calcification of zebrafish. Results: The expression of Mir24-2-5p was reduced throughout the mineralization process of osteoblast precursor cells. miRNA inhibitors and mimics were transfected into osteoblast precursor cells. Cell proliferation, migration, osteogenic differentiation, and mineralization processes were measured, which showed a reverse correlation with the expression of Mir24-2-5p. Dual-luciferase reporter gene detection assay confirmed the direct interaction between Mir24-2-5p and Gnai3 mRNA. Moreover, in osteoblast precursor cells treated with Mir24-2-5p inhibitor, the expression of Gnai3 gene was increased, suggesting that Mir24-2-5p negatively targeted Gnai3. Silencing of Gnai3 inhibited osteoblast precursor cells proliferation, migration, osteogenic differentiation, and mineralization. Promoting effects of osteoblast precursor cells proliferation, migration, osteogenic differentiation, and mineralization by low expression of Mir24-2-5p was partially rescued upon silencing of Gnai3. In vivo, mir24-2-5p Agomir microinjection into zebrafish embryo resulted in shorter body length, smaller and retruded mandible, decreased cartilage development, and vertebral calcification, which was partially rescued by microinjecting gnai3 mRNA. Notably, quite similar phenotypic outcomes were observed in gnai3 MO embryos, which were also partially rescued by mir24-2-5p MO. Besides, the expression of phospho-JNK (p-JNK) and p-p38 were increased upon Mir24-2-5p inhibitor treatment and decreased upon shGnai3-mediated Gnai3 downregulation in osteoblast precursor cells. Osteogenic differentiation and mineralization abilities of shGnai3-treated osteoblast precursor cells were promoted by p-JNK and p-p38 pathway activators, suggesting that Gnai3 might regulate the differentiation and mineralization processes in osteoblast precursor cells through the MAPK signaling pathway. Conclusions: In this study, we investigated the regulatory mechanism of Mir24-2-5p on Gnai3 expression regulation in osteoblast precursor cells and provided a new idea of improving the prevention and treatment strategies for congenital mandibular defects and mandibular protrusion.


Assuntos
Diferenciação Celular/fisiologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , MAP Quinase Quinase 4/metabolismo , MicroRNAs/metabolismo , Osteoblastos/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , MAP Quinase Quinase 4/genética , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Mimetismo Molecular , RNA/química , RNA/farmacologia , Transdução de Sinais , Regulação para Cima , Peixe-Zebra , Proteínas Quinases p38 Ativadas por Mitógeno/genética
16.
Theranostics ; 11(17): 8379-8395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34373748

RESUMO

Growth disorders in the orofacial bone development process may lead to orofacial deformities. The balance between bone matrix formation by mesenchymal lineage osteoblasts and bone resorption by osteoclasts is vital for orofacial bone development. Although the mechanisms of orofacial mesenchymal stem cells (OMSCs) in orofacial bone development have been studied intensively, the communication between OMSCs and osteoclasts remains largely unclear. Methods: We used a neural crest cell-specific knockout mouse model to investigate orofacial bone development in GATA-binding protein 4 (GATA4) morphants. We investigated the underlying mechanisms of OMSCs-derived exosomes (OMExos) on osteoclastogenesis and bone resorption activity in vitro. miRNAs were extracted from OMExos, and differences in miRNA abundances were determined using an Affymetrix miRNA array. Luciferase reporter assays were used to validate the binding between GATA4 and miR-206-3p in OMSCs and to confirm the putative binding of miR-206-3p and its target genes in OMSCs and osteoclasts. The regulatory mechanism of the GATA4-miR-206-3p axis in OMSC osteogenic differentiation and osteoclastogenesis was examined in vitro and in vivo. Results: Wnt1-Cre;Gata4fl/fl mice (cKO) not only presented inhibited bone formation but also showed active bone resorption. Osteoclasts cocultured in vitro with cKO OMSCs presented an increased capacity for osteoclastogenesis, which was exosome-dependent. Affymetrix miRNA array analysis showed that miR-206-3p was downregulated in exosomes from shGATA4 OMSCs. Moreover, the transcriptional activity of miR-206-3p was directly regulated by GATA4 in OMSCs. We further demonstrated that miR-206-3p played a key role in the regulation of orofacial bone development by directly targeting bone morphogenetic protein-3 (Bmp3) and nuclear factor of activated T -cells, cytoplasmic 1 (NFATc1). OMExos and agomiR-206-3p enhanced bone mass in Wnt1-cre;Gata4fl/fl mice by augmenting trabecular bone structure and decreasing osteoclast numbers. Conclusion: Our findings confirm that miR-206-3p is an important downstream factor of GATA4 that regulates the functions of OMSCs and osteoclasts. These results demonstrate the efficiency of OMExos and microRNA agomirs in promoting bone regeneration, which provide an ideal therapeutic tool for orofacial bone deformities in the future.


Assuntos
Fator de Transcrição GATA4/metabolismo , MicroRNAs/genética , Osteogênese/genética , Animais , Desenvolvimento Ósseo/genética , Desenvolvimento Ósseo/fisiologia , Reabsorção Óssea/metabolismo , Diferenciação Celular/genética , Exossomos/genética , Fator de Transcrição GATA4/genética , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese/fisiologia
17.
Plant Sci ; 310: 110976, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34315592

RESUMO

NAM, ATAF1/2, and CUC2 (NAC) proteins regulate plant responses to salt stress. However, the molecular mechanisms by which NAC proteins regulate salt-induced programmed cell death (PCD) are unclear. We identified 56 NAC genes, 35 of which had complete open reading frames with complete NAM domain, in the R. trigyna transcriptome. Salt stress and methyl jasmonate (MeJA) mediated PCD-induced leaf senescence in R. trigyna seedlings. Salt stress accelerated endogenous JA biosynthesis, upregulating RtNAC100 expression. This promoted salt-induced leaf senescence in R. trigyna by regulating RtRbohE and RtSAG12/20 and enhancing ROS accumulation. Transgenic assays showed that RtNAC100 overexpression aggravated salt-induced PCD in transgenic lines by promoting ROS and Na+ accumulation, ROS-Ca2+ hub activation, and PCD-related gene expression. Therefore, RtNAC100 induces PCD via the MeJA signaling pathway in R. trigyna under salt stress.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tamaricaceae/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tamaricaceae/efeitos dos fármacos
18.
Theranostics ; 11(15): 7247-7261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34158848

RESUMO

Rationale: Bone homeostasis is maintained by a balanced interplay of osteoblasts and osteoclasts. Osteoclasts are derived from monocyte/macrophage lineage. Major vault protein (MVP) is known to promote apoptosis and prevent metabolic diseases in macrophage. However, whether MVP is involved in osteoclastogenesis is unknown. Here, we identified an important function of MVP as a negative regulator of osteoclastogenesis and its therapeutic potential in preventing bone loss. Methods: Expression of MVP in osteoclasts was investigated in human tumor tissues with immunohistochemical staining. Next, we generated total body (Mvp-/- ) and monocyte-specific (Mvpf/fLyz2-Cre) MVP gene knockout mice to observe bone phenotype and osteoclastogenesis using micro-CT and bone histomorphometry. Moreover, we examined the effects of MVP on osteoclast differentiation, bone resorption, NFATc1 activation and calcium oscillations in vitro. Finally, we explored the clinical potential of targeting MVP in two osteoporosis mouse models and used an adeno-associated virus (AAV) gene to overexpress MVP locally in mice. Results: We found that Mvp-/- and Mvpf/fLyz2-Cre mice both exhibited osteoporosis-like phenotypes. MVP-deficiency also enhanced calcineurin-NFATc1 signaling and promoted NFATc1 activity, which led to enhanced osteoclastogenesis and bone resorption. Calcineurin inhibition using the small molecule inhibitor FK506 corrected the enhanced osteoclastogenesis in Mvpf/fLyz2-Cre group. Additionally, MVP reexpression in Mvpf/fLyz2-Cre group rescued calcineurin expression. MVP overexpression in wild-type mice prevented pathologic bone loss in mouse models of ovariectomized (OVX) and calvaria-adjacent lipopolysaccharide (LPS)-injected. Conclusions: Our data suggested that MVP negatively regulates osteoclast differentiation and bone resorption via inhibition of calcineurin-NFATc1 signaling. In osteoclast-related bone diseases such as osteoporosis, manipulation of MVP activity may be an attractive therapeutic target.


Assuntos
Calcineurina/metabolismo , Diferenciação Celular , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Transdução de Sinais , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Calcineurina/genética , Humanos , Camundongos , Camundongos Knockout , Fatores de Transcrição NFATC/genética , Partículas de Ribonucleoproteínas em Forma de Abóbada/genética
19.
Food Funct ; 12(12): 5317-5332, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34015803

RESUMO

The use of probiotics has recently become a considerably promising research area. The most advanced fourth-generation probiotics involve beneficial bacteria enclosed in biofilms. However, differences in the effects of probiotics in biofilm and those in planktonic states are, as yet, unclear. In this study, it was ascertained that the biofilm mode of Lactobacillus paraplantarum L-ZS9 had a comparatively higher density and stronger resistance. Untargeted metabolomics analysis suggested a significant distinction between planktonic and biofilm cells, with amino acids and carbohydrate metabolism both more active in the biofilm mode. Furthermore, the in vivo experiment showed that the biofilm strain displayed better immunomodulation activity, which could increase the relative abundance of Lactobacillus in the intestinal microbiota of dogs. The relative abundance of intestinal microbiota participating in carbohydrate metabolism was higher in the biofilm probiotic-treated dogs. Correlation analysis between L-ZS9-producing metabolites, dog intestinal microbiome diversity and dog blood immune indexes (sIgA or IgG) revealed the interaction between these three components, which might explain the mechanisms by which biofilm L-ZS9 regulated the intestinal microbiome and immunity activity of the host, through the production of various metabolites. Findings of this study will, thus, enhance understanding of the beneficial effects of biofilm probiotics, as well as provide references for further investigation.


Assuntos
Biofilmes/efeitos dos fármacos , Intestinos/microbiologia , Lactobacillus/metabolismo , Metaboloma , Animais , Cães , Microbioma Gastrointestinal/fisiologia , Intestinos/imunologia , Redes e Vias Metabólicas , Metabolômica , Probióticos/farmacologia
20.
Theranostics ; 11(9): 4316-4334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754063

RESUMO

Trio is a unique member of the Rho-GEF family that has three catalytic domains and is vital for various cellular processes in both physiological and developmental settings. TRIO mutations in humans are involved in craniofacial abnormalities, in which patients present with mandibular retrusion. However, little is known about the molecular mechanisms of Trio in neural crest cell (NCC)-derived craniofacial development, and there is still a lack of direct evidence to assign a functional role to Trio in NCC-induced craniofacial abnormalities. Methods:In vivo, we used zebrafish and NCC-specific knockout mouse models to investigate the phenotype and dynamics of NCC development in Trio morphants. In vitro, iTRAQ, GST pull-down assays, and proximity ligation assay (PLA) were used to explore the role of Trio and its potential downstream mediators in NCC migration and differentiation. Results: In zebrafish and mouse models, disruption of Trio elicited a migration deficit and impaired the differentiation of NCC derivatives, leading to craniofacial growth deficiency and mandibular retrusion. Moreover, Trio positively regulated Myh9 expression and directly interacted with Myh9 to coregulate downstream cellular signaling in NCCs. We further demonstrated that disruption of Trio or Myh9 inhibited Rac1 and Cdc42 activity, specifically affecting the nuclear export of ß-catenin and NCC polarization. Remarkably, craniofacial abnormalities caused by trio deficiency in zebrafish could be partially rescued by the injection of mRNA encoding myh9, ca-Rac1, or ca-Cdc42. Conclusions: Here, we identified that Trio, interacting mostly with Myh9, acts as a key regulator of NCC migration and differentiation during craniofacial development. Our results indicate that trio morphant zebrafish and Wnt1-cre;Triofl/fl mice offer potential model systems to facilitate the study of the pathogenic mechanisms of Trio mutations causing craniofacial abnormalities.


Assuntos
Cadeias Pesadas de Miosina/genética , Crista Neural/fisiologia , Animais , Diferenciação Celular/genética , Linhagem Celular , Movimento Celular/genética , Embrião de Mamíferos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Fenótipo , RNA Mensageiro/genética , Transdução de Sinais/genética , Peixe-Zebra , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA